84 research outputs found

    Constraining the evolutionary fate of central compact objects: “old” radio pulsars in supernova remnants

    Get PDF
    published_or_final_versio

    Magnetar-like X-ray Bursts from an Anomalous X-ray Pulsar

    Get PDF
    Anomalous X-ray Pulsars (AXPs) are a class of rare X-ray pulsars whose energy source has been perplexing for some 20 years. Unlike other, better understood X-ray pulsars, AXPs cannot be powered by rotation or by accretion from a binary companion, hence the designation ``anomalous.'' AXP rotational and radiative properties are strikingly similar to those of another class of exotic objects, the Soft Gamma Repeaters (SGRs). However, the defining property of SGRs, namely their low-energy gamma-ray and X-ray bursts, have heretofore not been seen in AXPs. SGRs are thought to be ``magnetars,'' young neutron stars powered by the decay of an ultra-high magnetic field. The suggestion that AXPs are magnetars has been controversial. Here we report the discovery, from the direction of AXP 1E 1048-5937, of two X-ray bursts that have many properties similar to those of SGR bursts. These events imply a close relationship between AXPs and SGRs, with both being magnetars.Comment: 14 pages, 2 figures, accepted for publication in Nature. Note: The content of this paper is embargoed until 1900 hrs London time / 1400 US Eastern Time on Sept 1

    Hunting for Orphaned Central Compact Objects Among Radio Pulsars

    Get PDF
    postprin

    Probing the Neutron Star Interior with Glitches

    Full text link
    With the aim of constraining the structural properties of neutron stars and the equation of state of dense matter, we study sudden spin-ups, glitches, occurring in the Vela pulsar and in six other pulsars. We present evidence that glitches represent a self-regulating instability for which the star prepares over a waiting time. The angular momentum requirements of glitches in Vela indicate that at least 1.4% of the star's moment of inertia drives these events. If glitches originate in the liquid of the inner crust, Vela's `radiation radius' RR_\infty must exceed ~12 km for a mass of 1.4 solar masses. The isolated neutron star RX J18563-3754 is a promising candidate for a definitive radius measurement, and offers to further our understanding of dense matter and the origin of glitches.Comment: Invited talk at the Pacific Rim Conference on Stellar Astrophysics, Hong Kong, Aug. 1999. 9 pages, 5 figure

    An Anti-Glitch in a Magnetar

    Get PDF
    Magnetars are neutron stars showing dramatic X-ray and soft γ\gamma-ray outbursting behaviour that is thought to be powered by intense internal magnetic fields. Like conventional young neutron stars in the form of radio pulsars, magnetars exhibit "glitches" during which angular momentum is believed to be transferred between the solid outer crust and the superfluid component of the inner crust. Hitherto, the several hundred observed glitches in radio pulsars and magnetars have involved a sudden spin-up of the star, due presumably to the interior superfluid rotating faster than the crust. Here we report on X-ray timing observations of the magnetar 1E 2259+586 which we show exhibited a clear "anti-glitch" -- a sudden spin down. We show that this event, like some previous magnetar spin-up glitches, was accompanied by multiple X-ray radiative changes and a significant spin-down rate change. This event, if of origin internal to the star, is unpredicted in models of neutron star spin-down and is suggestive of differential rotation in the neutron star, further supporting the need for a rethinking of glitch theory for all neutron stars

    Pulsar Results with the Fermi Large Area Telescope

    Full text link
    The launch of the Fermi Gamma-ray Space Telescope has heralded a new era in the study of gamma-ray pulsars. The population of confirmed gamma-ray pulsars has gone from 6-7 to more than 60, and the superb sensitivity of the Large Area Telescope (LAT) on Fermi has allowed the detailed study of their spectra and light curves. Twenty-four of these pulsars were discovered in blind searches of the gamma-ray data, and twenty-one of these are, at present, radio quiet, despite deep radio follow-up observations. In addition, millisecond pulsars have been confirmed as a class of gamma-ray emitters, both individually and collectively in globular clusters. Recently, radio searches in the direction of LAT sources with no likely counterparts have been highly productive, leading to the discovery of a large number of new millisecond pulsars. Taken together, these discoveries promise a great improvement in the understanding of the gamma-ray emission properties and Galactic population of pulsars. We summarize some of the results stemming from these newly-detected pulsars and their timing and multi-wavelength follow-up observations.Comment: 21 pages, 9 figures, to appear in Proceedings of ICREA Workshop on The High-Energy Emission from Pulsars and their Systems, Sant Cugat, Spain, 2010 April 12-16 (Springer

    Strongly magnetized pulsars: explosive events and evolution

    Full text link
    Well before the radio discovery of pulsars offered the first observational confirmation for their existence (Hewish et al., 1968), it had been suggested that neutron stars might be endowed with very strong magnetic fields of 101010^{10}-101410^{14}G (Hoyle et al., 1964; Pacini, 1967). It is because of their magnetic fields that these otherwise small ed inert, cooling dead stars emit radio pulses and shine in various part of the electromagnetic spectrum. But the presence of a strong magnetic field has more subtle and sometimes dramatic consequences: In the last decades of observations indeed, evidence mounted that it is likely the magnetic field that makes of an isolated neutron star what it is among the different observational manifestations in which they come. The contribution of the magnetic field to the energy budget of the neutron star can be comparable or even exceed the available kinetic energy. The most magnetised neutron stars in particular, the magnetars, exhibit an amazing assortment of explosive events, underlining the importance of their magnetic field in their lives. In this chapter we review the recent observational and theoretical achievements, which not only confirmed the importance of the magnetic field in the evolution of neutron stars, but also provide a promising unification scheme for the different observational manifestations in which they appear. We focus on the role of their magnetic field as an energy source behind their persistent emission, but also its critical role in explosive events.Comment: Review commissioned for publication in the White Book of "NewCompStar" European COST Action MP1304, 43 pages, 8 figure

    Physics of Neutron Star Kicks

    Get PDF
    It is no longer necessary to `sell' the idea of pulsar kicks, the notion that neutron stars receive a large velocity (a few hundred to a thousand km s1^{-1}) at birth. However, the origin of the kicks remains mysterious. We review the physics of different kick mechanisms, including hydrodynamically driven, neutrino and magnetically driven kicks.Comment: 8 pages including 1 figure. To be published in "Stellar Astrophysics" (Pacific Rim Conference Proceedings), (Kluwer Pub.

    X-ray emission from isolated neutron stars

    Full text link
    X-ray emission is a common feature of all varieties of isolated neutron stars (INS) and, thanks to the advent of sensitive instruments with good spectroscopic, timing, and imaging capabilities, X-ray observations have become an essential tool in the study of these objects. Non-thermal X-rays from young, energetic radio pulsars have been detected since the beginning of X-ray astronomy, and the long-sought thermal emission from cooling neutron star's surfaces can now be studied in detail in many pulsars spanning different ages, magnetic fields, and, possibly, surface compositions. In addition, other different manifestations of INS have been discovered with X-ray observations. These new classes of high-energy sources, comprising the nearby X-ray Dim Isolated Neutron Stars, the Central Compact Objects in supernova remnants, the Anomalous X-ray Pulsars, and the Soft Gamma-ray Repeaters, now add up to several tens of confirmed members, plus many candidates, and allow us to study a variety of phenomena unobservable in "standard'' radio pulsars.Comment: Chapter to be published in the book of proceedings of the 1st Sant Cugat Forum on Astrophysics, "ICREA Workshop on the high-energy emission from pulsars and their systems", held in April, 201
    corecore